BMW shows its 2015 3-Series Plug-In Hybrid Prototype

Article by Christian Andrei, on November 28, 2014

BMW officially revealed today the first photos with its 3-Series Plug-In Hybrid Prototype as well as the first details of its upcoming vehicle. According to the Bavarian carmaker, the 3-Series Plug-In Hybrid is powered by a 2.0-liter four-cylinder turbocharged petrol engine as well as by an electric motor. The total output delivered by the hybrid system is 245 hp and 400 Nm (295 lb-ft) of torque.

The big surprise is that fuel consumption of this vehicle is just 2 l/100 km (140 mpg), while CO2 emissions are 50 g/km. Using just the electricity stored in the lithium-ion battery, the 3-Series Plug-In Hybrid offers a range of 35 km (22 mph), while top speed is 120 km/h or 74.5 mph.

The electric motor and power electronics found on the plug-in hybrid prototype are based on the BMW eDrive technology found on the BMW i3 and BMW i8 models. Just like any other hybrid model, the 3-Series Plug-In Hybrid will offer three different driving modes: Comfort, Sport and Eco Pro.

Each mode shows different suspension settings as well as different shift characteristics for the 8-speed Steptronic transmission. BMW says that its plug-in hybrid model will offer performance figures comparable with the 3-Series six-cylinder model, combined with a significant reduction in fuel consumption.

Press Release

BMW 3-Series Plug-In Hybrid Prototype

Outstanding flexibility, which means it can be integrated in a wide range of different vehicle concepts, makes rapid deployment of this plug-in hybrid drive technology in the BMW model range a feasible and realistic proposition. The BMW 3 Series plug-in hybrid prototype provides a first taste of the extra- efficient driving pleasure which the world’s most successful premium sedan will offer.

Combining a four-cylinder TwinPower Turbo petrol engine from the new Efficient Dynamics engine family with an electric motor, the BMW 3 Series plug-in hybrid prototype offers standards of sporty performance on a par with a conventionally powered BMW 3 Series six-cylinder model, combined with a significant reduction in fuel consumption. Its plug-in hybrid drive system has a combined output of approximately 245 hp and maximum combined torque of approximately 400 Newton metres (295 lb-ft).

These figures, together with the substantial extra acceleration provided by the electric motor’s boost function, bring a sharp and intensely dynamic dimension to everyday motoring. Average fuel consumption and CO2 emissions are approximately 2 litres/100 km (140 mpg imp) and 50 g/km respectively. In all-electric mode, the prototype is capable of a top speed of 120 km/h (74.5 mph), and has a driving range of approximately 35 kilometres (22 miles).
Plug-in hybrid system in the BMW 3 Series Sedan: ideal platform, superior drive components, maximum efficiency.

The BMW 3 Series Sedan provides the ideal starting point for developing an exceptionally dynamic and fuel-efficient plug-in hybrid model. The conventional combustion-powered models already set standards in the mid- sized premium segment with their blend of sportiness and frugal fuel consumption. This is down to factors such as intelligent lightweight design, best-in-class aerodynamics and an extensive range of standard-specification BMW EfficientDynamics technologies.

The internal combustion engine used in the BMW 3 Series plug-in hybrid prototype is based on a TwinPower Turbo four-cylinder petrol engine that has already twice been voted “International Engine of the Year”. Its hallmarks are sporty performance, smooth and refined running and exceptional efficiency. The plug-in hybrid prototype also features an electric motor and power electronics which are directly based on the BMW eDrive technology of the BMW i3 and BMW i8 models. The motor is powered by a lithium-ion battery which, together with the battery management system and high-efficiency direct cooling system, are likewise rooted in the experience and know-how amassed during development of the BMW i models. The battery can be recharged at any household power socket and is mounted in a particularly crash-safe position underneath the load compartment.

The power electronics form a single integrated system that drives the electric motor, via a liquid-cooled inverter, manages the energy flow from the high- voltage battery to the onboard electrical systems and provides centralised control of hybrid-specific functions. The drive torque from engine and electric motor is supplied to the rear wheels of the BMW 3 Series plug-in hybrid prototype via an 8-speed Steptronic transmission which – as on conventionally powered BMW models – makes its own additional contribution to the efficiency of the overall drive system.

Nowadays, the potential integration of a plug-in hybrid system is taken into account at all stages in the development of new models of the BMW and MINI brands. Amongst other things, this ensures that future hybrid versions offer the same level of practicality as the base models. For example, there is only a minimal reduction in boot space in the BMW 3 Series plug-in hybrid prototype compared with a conventionally powered BMW 3 Series Sedan, while the interior configuration possibilities – e.g. with the folding rear seatback – are unchanged. The simplicity with which the 8-speed Steptronic transmission can be integrated into the plug-in hybrid system is a further benefit of this flexible, forward-looking development strategy.

Intelligent energy management with adaptive powertrain control.

Like the current production models, the BMW 3 Series plug-in hybrid prototype is fitted with a Driving Experience Control switch, which is mounted on the centre console. This can be used to select different vehicle settings to suit varying requirements and situations. Three different modes are available: COMFORT, SPORT and ECO PRO mode. Each features different suspension settings, different shift characteristics for the 8-speed Steptronic transmission, and a different hybrid operating strategy.

In COMFORT mode, which perfectly balances comfort and efficiency on the one hand with typical BMW dynamic performance on the other, the electric motor’s control strategy is geared to relaxed, fuel-efficient driving. In tandem, the electric motor and internal combustion engine can also deliver high levels of power and performance when required. SPORT mode, meanwhile, is aimed at maximised performance, harnessing the full combined output of the engine and the electric motor. In this mode, engine and motor are both on stream at all times, ensuring instantaneous response to all accelerator commands. Finally, in ECO PRO mode, the accent is on harnessing the full efficiency potential of electrification. Intelligent hybrid functionality allows the electric motor and internal combustion engine to work in tandem to maximise overall system efficiency. Efficient energy management is enhanced by variable control of the electric comfort functions such as air conditioning, seat heating and exterior mirror heating, which always operate at the most appropriate power level. This likewise helps to maximise the vehicle’s range.

At the press of a button, the driver can choose between different plug-in hybrid modes. The MAX eDrive mode provides all-electric, zero-local- emission propulsion. Selecting the SAVE Battery mode keeps the battery at a constant state of charge. If the battery is less than 50 percent charged, the charge level is increased. In this way drivers can ensure they have enough power in reserve to operate in all-electric mode on a later, urban section of the journey.

The BMW 3 Series plug-in hybrid prototype also features a special hybrid- adapted Proactive Driving Assistant. Integrated in the navigation system, this system manages the powertrain not only with reference to current battery capacity but also to upcoming route profile, speed restrictions and traffic conditions.

This function marks the most extensive and advanced integration to date of BMW EfficientDynamics and BMW ConnectedDrive. Whenever the navigation system is in operation, the hybrid Proactive Driving Assistant collates all the available information about the upcoming route and relays this to the powertrain controller. This information comprises both static data from the interactive map, for example about speed restrictions and gradients, and also real-time information on current traffic conditions (Real Time Traffic Information – RTTI). The proactive energy management system then breaks the route down into its component parts, including low-speed sections, last- lap sections and gradients, before computing a proactive, route-specific strategy for managing the electric drive power right through to the specified destination.

If you liked the article, share on:


Login or Create new account to add a comment!


Many have been excited with the impending arrival of the next-generation Jeep Wrangler and the new 2019 Jeep Grand Wagoneer, which is slated to be the brand’s new range-topping model....
by - October 21, 2016
Chevrolet has taken the wraps off its new Chevrolet Colorado ZH2 at the fall meeting of the Association of the United States Army (AUSA). Tagged as the most extreme fuel-cell-powered...
by - October 21, 2016
Honda has unveiled the fifth generation of its hot-selling SUV – the 2017 Honda CR-V. The latest iteration of the CR-V should help it maintain its benchmark status in the...
by - October 21, 2016
Many are already expecting BMW to launch an ultra luxurious SUV that will serve at its new flagship by late 2018. Larger than the X5 and X6, the new X7...
by - October 21, 2016
Most of you may have heard or already have one of those autonomous home appliances doing the house chores. Thus, it’s not anymore unusual to see a car going places...
by - October 20, 2016